diff options
| author | Sebastiano Tronto <sebastiano@tronto.net> | 2025-01-14 21:32:09 +0100 |
|---|---|---|
| committer | Sebastiano Tronto <sebastiano@tronto.net> | 2025-01-14 21:32:09 +0100 |
| commit | 38efc7d2df030d37e3f20efbce71fadad1294cef (patch) | |
| tree | bbe8a7bbb6acbeb2b7ed54c189d1e719a7459427 | |
| parent | 8ca27427af98bd3a82e8c5f4a199513295747930 (diff) | |
| download | zmodn-38efc7d2df030d37e3f20efbce71fadad1294cef.tar.gz zmodn-38efc7d2df030d37e3f20efbce71fadad1294cef.zip | |
Added BigInt
| -rw-r--r-- | README.md | 9 | ||||
| -rw-r--r-- | bigint.h | 245 | ||||
| -rwxr-xr-x | test | 349 | ||||
| -rw-r--r-- | zmodn.h | 25 |
4 files changed, 621 insertions, 7 deletions
| @@ -1,10 +1,17 @@ | |||
| 1 | # ZmodN - A simple library for modular arithmetic | 1 | # ZmodN - A simple library for modular arithmetic |
| 2 | 2 | ||
| 3 | ## ZmodN | ||
| 4 | |||
| 3 | Usage: | 5 | Usage: |
| 4 | 6 | ||
| 5 | 1. `#include "zmodn.h"` in your project | 7 | 1. `#include "zmodn.h"` in your project |
| 6 | 2. enjoy | 8 | 2. enjoy |
| 7 | 9 | ||
| 8 | # Development | 10 | ## BigInt |
| 11 | |||
| 12 | This repo contains also a class for big integer. Performance are not great, | ||
| 13 | but you have a look at it for educational purposes. | ||
| 14 | |||
| 15 | ## Development | ||
| 9 | 16 | ||
| 10 | Run `chmod +x test` and then `./test` to run tests. | 17 | Run `chmod +x test` and then `./test` to run tests. |
diff --git a/bigint.h b/bigint.h new file mode 100644 index 0000000..a8199b9 --- /dev/null +++ b/bigint.h | |||
| @@ -0,0 +1,245 @@ | |||
| 1 | #ifndef BIGUNSIGNED_H | ||
| 2 | #define BIGUNSIGNED_H | ||
| 3 | |||
| 4 | #include <cstdint> | ||
| 5 | #include <iostream> | ||
| 6 | #include <string_view> | ||
| 7 | |||
| 8 | constexpr uint64_t abs64(int64_t); | ||
| 9 | constexpr uint64_t pow10(uint64_t); | ||
| 10 | |||
| 11 | // Big integer class for numbers of at most N decimal digits. | ||
| 12 | // The number E is used to tune the size of each digit, mostly for | ||
| 13 | // testing purposes. | ||
| 14 | |||
| 15 | template<uint64_t N = 50, uint64_t E = 9> | ||
| 16 | requires (E < 10) | ||
| 17 | class BigInt { | ||
| 18 | public: | ||
| 19 | // The member variables sign and digits are declared public so that | ||
| 20 | // BigInt becomes a structural type and can be used in templates. | ||
| 21 | |||
| 22 | static constexpr uint64_t M = pow10(E); | ||
| 23 | static constexpr uint64_t D = (N / E) + 1; | ||
| 24 | |||
| 25 | bool sign; | ||
| 26 | uint64_t digits[D]; | ||
| 27 | |||
| 28 | constexpr BigInt() : sign{true} { | ||
| 29 | std::fill(digits, digits+D, 0); | ||
| 30 | } | ||
| 31 | |||
| 32 | constexpr BigInt(int64_t n) : sign{n >= 0} { | ||
| 33 | std::fill(digits, digits+D, 0); | ||
| 34 | digits[0] = abs64(n); | ||
| 35 | carryover(); | ||
| 36 | } | ||
| 37 | |||
| 38 | constexpr BigInt(const std::string_view s) : sign{true} { | ||
| 39 | std::fill(digits, digits+D, 0); | ||
| 40 | if (s.size() == 0) | ||
| 41 | return; | ||
| 42 | for (int i = s.size()-1, j = 0; i >= 0; i--, j++) { | ||
| 43 | if (s[i] == '\'') | ||
| 44 | continue; | ||
| 45 | if (i == 0 && s[i] == '-') { | ||
| 46 | sign = false; | ||
| 47 | break; | ||
| 48 | } | ||
| 49 | digits[j/E] += (pow10(j % E)) | ||
| 50 | * static_cast<uint64_t>(s[i] - '0'); | ||
| 51 | } | ||
| 52 | } | ||
| 53 | |||
| 54 | constexpr auto operator<=>(const BigInt& other) const { | ||
| 55 | if (sign != other.sign) | ||
| 56 | return sign <=> other.sign; | ||
| 57 | |||
| 58 | for (int i = D-1; i >= 0; i--) | ||
| 59 | if (digits[i] != other.digits[i]) | ||
| 60 | return sign ? | ||
| 61 | digits[i] <=> other.digits[i] : | ||
| 62 | other.digits[i] <=> digits[i]; | ||
| 63 | |||
| 64 | return 0 <=> 0; | ||
| 65 | } | ||
| 66 | |||
| 67 | constexpr bool operator==(const BigInt& other) const = default; | ||
| 68 | |||
| 69 | constexpr BigInt abs() const { | ||
| 70 | BigInt ret = *this; | ||
| 71 | ret.sign = true; | ||
| 72 | return ret; | ||
| 73 | } | ||
| 74 | |||
| 75 | constexpr BigInt operator-() const { | ||
| 76 | if (*this == 0) | ||
| 77 | return 0; | ||
| 78 | BigInt ret = *this; | ||
| 79 | ret.sign = !ret.sign; | ||
| 80 | return ret; | ||
| 81 | } | ||
| 82 | |||
| 83 | constexpr BigInt operator+(const BigInt& z) const { | ||
| 84 | if (sign && z.sign) | ||
| 85 | return positive_sum(*this, z); | ||
| 86 | else if (sign && !z.sign) | ||
| 87 | return positive_diff(*this, -z); | ||
| 88 | else if (!sign && z.sign) | ||
| 89 | return positive_diff(z, -*this); | ||
| 90 | else | ||
| 91 | return -positive_sum(-*this, -z); | ||
| 92 | } | ||
| 93 | |||
| 94 | constexpr BigInt operator-(const BigInt& z) const { | ||
| 95 | return *this + (-z); | ||
| 96 | } | ||
| 97 | |||
| 98 | constexpr BigInt operator*(const BigInt& z) const { | ||
| 99 | BigInt ret; | ||
| 100 | ret.sign = !(sign ^ z.sign); | ||
| 101 | for (int i = 0; i < D; i++) | ||
| 102 | for (int j = 0; i+j < D; j++) | ||
| 103 | ret.digits[i+j] += digits[i] * z.digits[j]; | ||
| 104 | ret.carryover(); | ||
| 105 | return ret; | ||
| 106 | } | ||
| 107 | |||
| 108 | constexpr BigInt operator/(const BigInt& z) const { | ||
| 109 | auto [q, r] = euclidean_division(*this, z); | ||
| 110 | return q; | ||
| 111 | } | ||
| 112 | |||
| 113 | constexpr BigInt operator%(const BigInt& z) const { | ||
| 114 | auto [q, r] = euclidean_division(*this, z); | ||
| 115 | return r; | ||
| 116 | } | ||
| 117 | |||
| 118 | constexpr BigInt operator+=(const BigInt& z) { return *this = *this + z; } | ||
| 119 | constexpr BigInt operator++() { return *this += 1; } | ||
| 120 | constexpr BigInt operator-=(const BigInt& z) { return *this = *this - z; } | ||
| 121 | constexpr BigInt operator--() { return *this -= 1; } | ||
| 122 | constexpr BigInt operator*=(const BigInt& z) { return *this = *this * z; } | ||
| 123 | constexpr BigInt operator/=(const BigInt& z) { return *this = *this / z; } | ||
| 124 | constexpr BigInt operator%=(const BigInt& z) { return *this = *this % z; } | ||
| 125 | |||
| 126 | friend std::ostream& operator<<(std::ostream& os, const BigInt<N, E>& z) { | ||
| 127 | bool fl = false; | ||
| 128 | if (!z.sign) | ||
| 129 | os << "-"; | ||
| 130 | for (int i = z.D-1; i >= 0; i--) | ||
| 131 | if (fl = fl || z.digits[i] != 0; fl) | ||
| 132 | os << z.digits[i]; | ||
| 133 | if (z == 0) | ||
| 134 | os << "0"; | ||
| 135 | return os; | ||
| 136 | } | ||
| 137 | |||
| 138 | private: | ||
| 139 | constexpr void carryover() { | ||
| 140 | for (int i = 1; i < D; i++) { | ||
| 141 | auto c = digits[i-1] / M; | ||
| 142 | digits[i-1] -= c * M; | ||
| 143 | digits[i] += c; | ||
| 144 | } | ||
| 145 | } | ||
| 146 | |||
| 147 | constexpr BigInt half() const { | ||
| 148 | BigInt ret; | ||
| 149 | uint64_t carry = 0; | ||
| 150 | for (int i = D-1; i >= 0; i--) { | ||
| 151 | ret.digits[i] += (digits[i] + M * carry) / 2; | ||
| 152 | carry = digits[i] % 2; | ||
| 153 | } | ||
| 154 | return ret; | ||
| 155 | } | ||
| 156 | |||
| 157 | static constexpr BigInt powM(uint64_t e) { | ||
| 158 | BigInt ret; | ||
| 159 | ret.digits[e] = 1; | ||
| 160 | return ret; | ||
| 161 | } | ||
| 162 | |||
| 163 | // Sum of non-negative integers | ||
| 164 | static constexpr BigInt positive_sum(const BigInt& x, const BigInt& y) { | ||
| 165 | BigInt ret; | ||
| 166 | for (int i = 0; i < D; i++) | ||
| 167 | ret.digits[i] = x.digits[i] + y.digits[i]; | ||
| 168 | ret.carryover(); | ||
| 169 | return ret; | ||
| 170 | } | ||
| 171 | |||
| 172 | // Difference of non-negative integers (result may be negative) | ||
| 173 | static constexpr BigInt positive_diff(const BigInt& x, const BigInt& y) { | ||
| 174 | if (y > x) | ||
| 175 | return -positive_diff(y, x); | ||
| 176 | |||
| 177 | BigInt ret; | ||
| 178 | uint64_t carry = 0; | ||
| 179 | for (int i = 0; i < D; i++) { | ||
| 180 | uint64_t oldcarry = carry; | ||
| 181 | if (x.digits[i] < y.digits[i] + oldcarry) { | ||
| 182 | ret.digits[i] = M; | ||
| 183 | carry = 1; | ||
| 184 | } else { | ||
| 185 | carry = 0; | ||
| 186 | } | ||
| 187 | ret.digits[i] += x.digits[i]; | ||
| 188 | ret.digits[i] -= y.digits[i] + oldcarry; | ||
| 189 | } | ||
| 190 | ret.carryover(); | ||
| 191 | return ret; | ||
| 192 | } | ||
| 193 | |||
| 194 | // Division with remainder, UB if y == 0 | ||
| 195 | static constexpr std::pair<BigInt, BigInt> | ||
| 196 | euclidean_division(const BigInt& x, const BigInt& y) { | ||
| 197 | auto [q, r] = positive_div(x.abs(), y.abs()); | ||
| 198 | if (x.sign && y.sign) | ||
| 199 | return std::pair(q, r); | ||
| 200 | else if (x.sign && !y.sign) | ||
| 201 | return r == 0 ? std::pair(-q, 0) : std::pair(-q-1, y+r); | ||
| 202 | else if (!x.sign && y.sign) | ||
| 203 | return r == 0 ? std::pair(-q, r) : std::pair(-q-1, y-r); | ||
| 204 | else | ||
| 205 | return std::pair(q, -r); | ||
| 206 | } | ||
| 207 | |||
| 208 | // Division with remainder of non-negative integers, UB if y == 0 | ||
| 209 | // This method is inefficient (O(log(x/y)) BigInt multiplications) | ||
| 210 | static constexpr std::pair<BigInt, BigInt> | ||
| 211 | positive_div(const BigInt& x, const BigInt& y) { | ||
| 212 | BigInt q = 0; | ||
| 213 | BigInt r = x; | ||
| 214 | |||
| 215 | if (y > x) | ||
| 216 | return std::pair(q, r); | ||
| 217 | |||
| 218 | BigInt lb = 0; | ||
| 219 | BigInt ub = x; | ||
| 220 | while (true) { | ||
| 221 | BigInt q = (ub + lb).half(); | ||
| 222 | BigInt r = x - y*q; | ||
| 223 | |||
| 224 | if (r < 0) | ||
| 225 | ub = q; | ||
| 226 | else if (r >= y) | ||
| 227 | lb = q+1; | ||
| 228 | else | ||
| 229 | return std::pair(q, r); | ||
| 230 | } | ||
| 231 | } | ||
| 232 | }; | ||
| 233 | |||
| 234 | constexpr uint64_t abs64(int64_t x) { | ||
| 235 | return static_cast<uint64_t>(x > 0 ? x : -x); | ||
| 236 | } | ||
| 237 | |||
| 238 | constexpr uint64_t pow10(uint64_t e) { | ||
| 239 | if (e == 0) | ||
| 240 | return 1; | ||
| 241 | else | ||
| 242 | return 10 * pow10(e-1); | ||
| 243 | } | ||
| 244 | |||
| 245 | #endif | ||
| @@ -2,13 +2,16 @@ | |||
| 2 | 2 | ||
| 3 | cc=${CC:-g++} | 3 | cc=${CC:-g++} |
| 4 | bin="$(mktemp)" | 4 | bin="$(mktemp)" |
| 5 | ${cc} -x c++ -std=c++20 -o "$bin" "$(realpath $0)" | 5 | ${cc} -x c++ -std=c++20 -o "$bin" -g -O0 "$(realpath $0)" |
| 6 | echo "Running $bin" | ||
| 6 | "$bin" | 7 | "$bin" |
| 7 | 8 | ||
| 8 | exit 0 | 9 | exit 0 |
| 9 | #endif | 10 | #endif |
| 10 | 11 | ||
| 11 | #include "zmodn.h" | 12 | #include "zmodn.h" |
| 13 | #include "bigint.h" | ||
| 14 | |||
| 12 | #include <concepts> | 15 | #include <concepts> |
| 13 | #include <functional> | 16 | #include <functional> |
| 14 | #include <iostream> | 17 | #include <iostream> |
| @@ -141,6 +144,350 @@ public: | |||
| 141 | assert_equal(p, 92); | 144 | assert_equal(p, 92); |
| 142 | } | 145 | } |
| 143 | }, | 146 | }, |
| 147 | { | ||
| 148 | .name = "BigInt constructor zero", | ||
| 149 | .f = []() { | ||
| 150 | BigInt x; | ||
| 151 | BigInt y(0); | ||
| 152 | |||
| 153 | assert_equal(x, y); | ||
| 154 | } | ||
| 155 | }, | ||
| 156 | { | ||
| 157 | .name = "BigInt constructor one digit", | ||
| 158 | .f = []() { | ||
| 159 | BigInt x(12345); | ||
| 160 | BigInt y("12345"); | ||
| 161 | |||
| 162 | assert_equal(x, y); | ||
| 163 | } | ||
| 164 | }, | ||
| 165 | { | ||
| 166 | .name = "BigInt constructor many small digits", | ||
| 167 | .f = []() { | ||
| 168 | BigInt<20, 2> x(123456789); | ||
| 169 | BigInt<20, 2> y("123456789"); | ||
| 170 | |||
| 171 | assert_equal(x, y); | ||
| 172 | } | ||
| 173 | }, | ||
| 174 | { | ||
| 175 | .name = "BigInt constructor negative many small digits", | ||
| 176 | .f = []() { | ||
| 177 | BigInt<20, 2> x(-123456789); | ||
| 178 | BigInt<20, 2> y("-123456789"); | ||
| 179 | |||
| 180 | assert_equal(x, y); | ||
| 181 | } | ||
| 182 | }, | ||
| 183 | { | ||
| 184 | .name = "BigInt operator==", | ||
| 185 | .f = []() { | ||
| 186 | BigInt<20, 2> x(123456789); | ||
| 187 | BigInt<20, 2> y("123456789"); | ||
| 188 | BigInt<20, 2> z("12456789"); | ||
| 189 | |||
| 190 | bool eq = (x == y); | ||
| 191 | bool diff = (x == z); | ||
| 192 | |||
| 193 | assert_equal(eq, true); | ||
| 194 | assert_equal(diff, false); | ||
| 195 | }, | ||
| 196 | }, | ||
| 197 | { | ||
| 198 | .name = "BigInt operator== negative", | ||
| 199 | .f = []() { | ||
| 200 | BigInt<20, 2> x("-123456789"); | ||
| 201 | BigInt<20, 2> z("123456789"); | ||
| 202 | |||
| 203 | bool diff = (x == z); | ||
| 204 | |||
| 205 | assert_equal(diff, false); | ||
| 206 | }, | ||
| 207 | }, | ||
| 208 | { | ||
| 209 | .name = "BigInt operator!= true", | ||
| 210 | .f = []() { | ||
| 211 | BigInt<20, 2> x(12345678); | ||
| 212 | BigInt<20, 2> y("123456789"); | ||
| 213 | BigInt<20, 2> z("123456789"); | ||
| 214 | |||
| 215 | bool diff = (x != y); | ||
| 216 | bool eq = (y != z); | ||
| 217 | |||
| 218 | assert_equal(diff, true); | ||
| 219 | assert_equal(eq, false); | ||
| 220 | }, | ||
| 221 | }, | ||
| 222 | { | ||
| 223 | .name = "BigInt operator< and operator>", | ||
| 224 | .f = []() { | ||
| 225 | BigInt<20, 2> x(7891); | ||
| 226 | BigInt<20, 2> y(7881); | ||
| 227 | |||
| 228 | bool t = (y < x); | ||
| 229 | bool f = (x < y); | ||
| 230 | |||
| 231 | assert_equal(t, true); | ||
| 232 | assert_equal(f, false); | ||
| 233 | } | ||
| 234 | }, | ||
| 235 | { | ||
| 236 | .name = "BigInt operator< both negative", | ||
| 237 | .f = []() { | ||
| 238 | BigInt<20, 2> x(-7891); | ||
| 239 | BigInt<20, 2> y(-7881); | ||
| 240 | |||
| 241 | bool cmp = (x < y); | ||
| 242 | |||
| 243 | assert_equal(cmp, true); | ||
| 244 | } | ||
| 245 | }, | ||
| 246 | { | ||
| 247 | .name = "BigInt operator< different sign", | ||
| 248 | .f = []() { | ||
| 249 | BigInt<20, 2> x(-7); | ||
| 250 | BigInt<20, 2> y(7); | ||
| 251 | |||
| 252 | bool cmp = (x < y); | ||
| 253 | |||
| 254 | assert_equal(cmp, true); | ||
| 255 | } | ||
| 256 | }, | ||
| 257 | { | ||
| 258 | .name = "BigInt abs", | ||
| 259 | .f = []() { | ||
| 260 | BigInt<20, 2> x(-1234567); | ||
| 261 | BigInt<20, 2> y(7654321); | ||
| 262 | |||
| 263 | assert_equal(x.abs(), BigInt<20, 2>(1234567)); | ||
| 264 | assert_equal(y.abs(), y); | ||
| 265 | } | ||
| 266 | }, | ||
| 267 | { | ||
| 268 | .name = "BigInt opposite", | ||
| 269 | .f = []() { | ||
| 270 | BigInt<20, 2> x(-1234567); | ||
| 271 | BigInt<20, 2> y(7654321); | ||
| 272 | |||
| 273 | assert_equal(-x, BigInt<20, 2>(1234567)); | ||
| 274 | assert_equal(-y, BigInt<20, 2>(-7654321)); | ||
| 275 | } | ||
| 276 | }, | ||
| 277 | { | ||
| 278 | .name = "BigInt -0 == 0", | ||
| 279 | .f = []() { | ||
| 280 | BigInt z(0); | ||
| 281 | |||
| 282 | assert_equal(-z, z); | ||
| 283 | } | ||
| 284 | }, | ||
| 285 | { | ||
| 286 | .name = "BigInt sum", | ||
| 287 | .f = []() { | ||
| 288 | BigInt<20, 2> x("987608548588589"); | ||
| 289 | BigInt<20, 2> y("6793564545455289"); | ||
| 290 | BigInt<20, 2> z("7781173094043878"); | ||
| 291 | |||
| 292 | assert_equal(x+y, z); | ||
| 293 | } | ||
| 294 | }, | ||
| 295 | { | ||
| 296 | .name = "BigInt sum both negative", | ||
| 297 | .f = []() { | ||
| 298 | BigInt<20, 2> x("-987608548588589"); | ||
| 299 | BigInt<20, 2> y("-6793564545455289"); | ||
| 300 | BigInt<20, 2> z("-7781173094043878"); | ||
| 301 | |||
| 302 | assert_equal(x+y, z); | ||
| 303 | } | ||
| 304 | }, | ||
| 305 | { | ||
| 306 | .name = "BigInt sum negative + positive, result positive", | ||
| 307 | .f = []() { | ||
| 308 | BigInt<20, 2> x("-987608548588589"); | ||
| 309 | BigInt<20, 2> y("6793564545455289"); | ||
| 310 | BigInt<20, 2> z("5805955996866700"); | ||
| 311 | |||
| 312 | assert_equal(x+y, z); | ||
| 313 | } | ||
| 314 | }, | ||
| 315 | { | ||
| 316 | .name = "BigInt sum positive + negative, result negative", | ||
| 317 | .f = []() { | ||
| 318 | BigInt<20, 2> x("987608548588589"); | ||
| 319 | BigInt<20, 2> y("-6793564545455289"); | ||
| 320 | BigInt<20, 2> z("-5805955996866700"); | ||
| 321 | |||
| 322 | assert_equal(x+y, z); | ||
| 323 | } | ||
| 324 | }, | ||
| 325 | { | ||
| 326 | .name = "BigInt difference", | ||
| 327 | .f = []() { | ||
| 328 | BigInt<20, 2> x("2342442323434134"); | ||
| 329 | BigInt<20, 2> y("2524342523342342"); | ||
| 330 | BigInt<20, 2> z("-181900199908208"); | ||
| 331 | |||
| 332 | assert_equal(x-y, z); | ||
| 333 | } | ||
| 334 | }, | ||
| 335 | { | ||
| 336 | .name = "BigInt product", | ||
| 337 | .f = []() { | ||
| 338 | BigInt<100, 3> x("134142345244134"); | ||
| 339 | BigInt<100, 3> y("-56543047058245"); | ||
| 340 | BigInt<100, 3> z("-7584816939642416135042584830"); | ||
| 341 | |||
| 342 | assert_equal(x*y, z); | ||
| 343 | } | ||
| 344 | }, | ||
| 345 | { | ||
| 346 | .name = "BigInt operator+=", | ||
| 347 | .f = []() { | ||
| 348 | BigInt<20, 2> x("987608548588589"); | ||
| 349 | BigInt<20, 2> y("6793564545455289"); | ||
| 350 | BigInt<20, 2> z("7781173094043878"); | ||
| 351 | |||
| 352 | x += y; | ||
| 353 | |||
| 354 | assert_equal(x, z); | ||
| 355 | } | ||
| 356 | }, | ||
| 357 | { | ||
| 358 | .name = "BigInt 14 / 3", | ||
| 359 | .f = []() { | ||
| 360 | BigInt x(14); | ||
| 361 | BigInt y(3); | ||
| 362 | |||
| 363 | assert_equal(x / y, 4); | ||
| 364 | } | ||
| 365 | }, | ||
| 366 | { | ||
| 367 | .name = "BigInt 14 % 3", | ||
| 368 | .f = []() { | ||
| 369 | BigInt x(14); | ||
| 370 | BigInt y(3); | ||
| 371 | |||
| 372 | assert_equal(x % y, 2); | ||
| 373 | } | ||
| 374 | }, | ||
| 375 | { | ||
| 376 | .name = "BigInt 14 / -3", | ||
| 377 | .f = []() { | ||
| 378 | BigInt x(14); | ||
| 379 | BigInt y(-3); | ||
| 380 | |||
| 381 | assert_equal(x / y, -5); | ||
| 382 | } | ||
| 383 | }, | ||
| 384 | { | ||
| 385 | .name = "BigInt 14 % -3", | ||
| 386 | .f = []() { | ||
| 387 | BigInt x(14); | ||
| 388 | BigInt y(-3); | ||
| 389 | |||
| 390 | assert_equal(x % y, -1); | ||
| 391 | } | ||
| 392 | }, | ||
| 393 | { | ||
| 394 | .name = "BigInt -14 / 3", | ||
| 395 | .f = []() { | ||
| 396 | BigInt x(-14); | ||
| 397 | BigInt y(3); | ||
| 398 | |||
| 399 | assert_equal(x / y, -5); | ||
| 400 | } | ||
| 401 | }, | ||
| 402 | { | ||
| 403 | .name = "BigInt -14 % 3", | ||
| 404 | .f = []() { | ||
| 405 | BigInt x(-14); | ||
| 406 | BigInt y(3); | ||
| 407 | |||
| 408 | assert_equal(x % y, 1); | ||
| 409 | } | ||
| 410 | }, | ||
| 411 | { | ||
| 412 | .name = "BigInt -14 / -3", | ||
| 413 | .f = []() { | ||
| 414 | BigInt x(-14); | ||
| 415 | BigInt y(-3); | ||
| 416 | |||
| 417 | assert_equal(x / y, 4); | ||
| 418 | } | ||
| 419 | }, | ||
| 420 | { | ||
| 421 | .name = "BigInt -14 % -3", | ||
| 422 | .f = []() { | ||
| 423 | BigInt x(-14); | ||
| 424 | BigInt y(-3); | ||
| 425 | |||
| 426 | assert_equal(x % y, -2); | ||
| 427 | } | ||
| 428 | }, | ||
| 429 | { | ||
| 430 | .name = "BigInt division large numbers, quotient = 0", | ||
| 431 | .f = []() { | ||
| 432 | BigInt<50, 3> x("4534435234134244242"); | ||
| 433 | BigInt<50, 3> y("7832478748237487343"); | ||
| 434 | |||
| 435 | assert_equal(x / y, 0); | ||
| 436 | } | ||
| 437 | }, | ||
| 438 | { | ||
| 439 | .name = "BigInt division large numbers", | ||
| 440 | .f = []() { | ||
| 441 | BigInt<50, 3> x("12344534435234134244242"); | ||
| 442 | BigInt<50, 3> y("7832478748237487343"); | ||
| 443 | BigInt<50, 3> z(1576); | ||
| 444 | |||
| 445 | assert_equal(x / y, z); | ||
| 446 | } | ||
| 447 | }, | ||
| 448 | { | ||
| 449 | .name = "BigInt modulo large numbers", | ||
| 450 | .f = []() { | ||
| 451 | BigInt<50, 3> x("12344534435234134244242"); | ||
| 452 | BigInt<50, 3> y("7832478748237487343"); | ||
| 453 | BigInt<50, 3> z("547928011854191674"); | ||
| 454 | |||
| 455 | assert_equal(x % y, z); | ||
| 456 | } | ||
| 457 | }, | ||
| 458 | { | ||
| 459 | .name = "Zmod with BigInt constructor", | ||
| 460 | .f = []() { | ||
| 461 | constexpr BigInt<50, 3> N("78923471"); | ||
| 462 | constexpr BigInt<50, 3> x("145452451"); | ||
| 463 | Zmod<N> xmodN(x); | ||
| 464 | |||
| 465 | assert_equal(xmodN.toint(), x % N); | ||
| 466 | } | ||
| 467 | }, | ||
| 468 | { | ||
| 469 | .name = "Zmod with BigInt big inverse", | ||
| 470 | .f = []() { | ||
| 471 | constexpr BigInt<50, 3> N("7520824651249795349285"); | ||
| 472 | constexpr BigInt<50, 3> x("234589234599896924596"); | ||
| 473 | constexpr BigInt<50, 3> expected("5901181270843786267351"); | ||
| 474 | Zmod<N> xmodN(x); | ||
| 475 | |||
| 476 | auto inv = xmodN.inverse(); | ||
| 477 | |||
| 478 | assert_equal(inv.has_value(), true); | ||
| 479 | assert_equal(inv.value().toint(), expected); | ||
| 480 | } | ||
| 481 | }, | ||
| 482 | /* | ||
| 483 | { | ||
| 484 | .name = "This does not compile", | ||
| 485 | .f = []() { | ||
| 486 | constexpr double N = 1.2; | ||
| 487 | Zmod<N> x; | ||
| 488 | } | ||
| 489 | } | ||
| 490 | */ | ||
| 144 | }; | 491 | }; |
| 145 | 492 | ||
| 146 | int main() { | 493 | int main() { |
| @@ -7,16 +7,31 @@ | |||
| 7 | #include <tuple> | 7 | #include <tuple> |
| 8 | #include <type_traits> | 8 | #include <type_traits> |
| 9 | 9 | ||
| 10 | template<typename INT> | 10 | template<typename T> |
| 11 | requires std::is_integral_v<INT> | 11 | concept Integer = requires(T a, T b, int i, std::ostream& os) { |
| 12 | std::tuple<INT, INT, INT> extended_gcd(INT a, INT b) { | 12 | {T(i)}; |
| 13 | |||
| 14 | {a + b} -> std::same_as<T>; | ||
| 15 | {a - b} -> std::same_as<T>; | ||
| 16 | {a * b} -> std::same_as<T>; | ||
| 17 | {a / b} -> std::same_as<T>; | ||
| 18 | {a % b} -> std::same_as<T>; | ||
| 19 | |||
| 20 | {a == b} -> std::same_as<bool>; | ||
| 21 | {a != b} -> std::same_as<bool>; | ||
| 22 | |||
| 23 | {os << a} -> std::same_as<std::ostream&>; | ||
| 24 | }; | ||
| 25 | |||
| 26 | template<Integer T> | ||
| 27 | std::tuple<T, T, T> extended_gcd(T a, T b) { | ||
| 13 | if (b == 0) return {a, 1, 0}; | 28 | if (b == 0) return {a, 1, 0}; |
| 14 | auto [g, x, y] = extended_gcd(b, a%b); | 29 | auto [g, x, y] = extended_gcd(b, a%b); |
| 15 | return {g, y, x - y*(a/b)}; | 30 | return {g, y, x - y*(a/b)}; |
| 16 | } | 31 | } |
| 17 | 32 | ||
| 18 | template<auto N> | 33 | template<Integer auto N> |
| 19 | requires(N > 1) && std::is_integral_v<decltype(N)> | 34 | requires(N > 1) |
| 20 | class Zmod { | 35 | class Zmod { |
| 21 | public: | 36 | public: |
| 22 | Zmod(decltype(N) z) : value{(z%N + N) % N} {} | 37 | Zmod(decltype(N) z) : value{(z%N + N) % N} {} |
